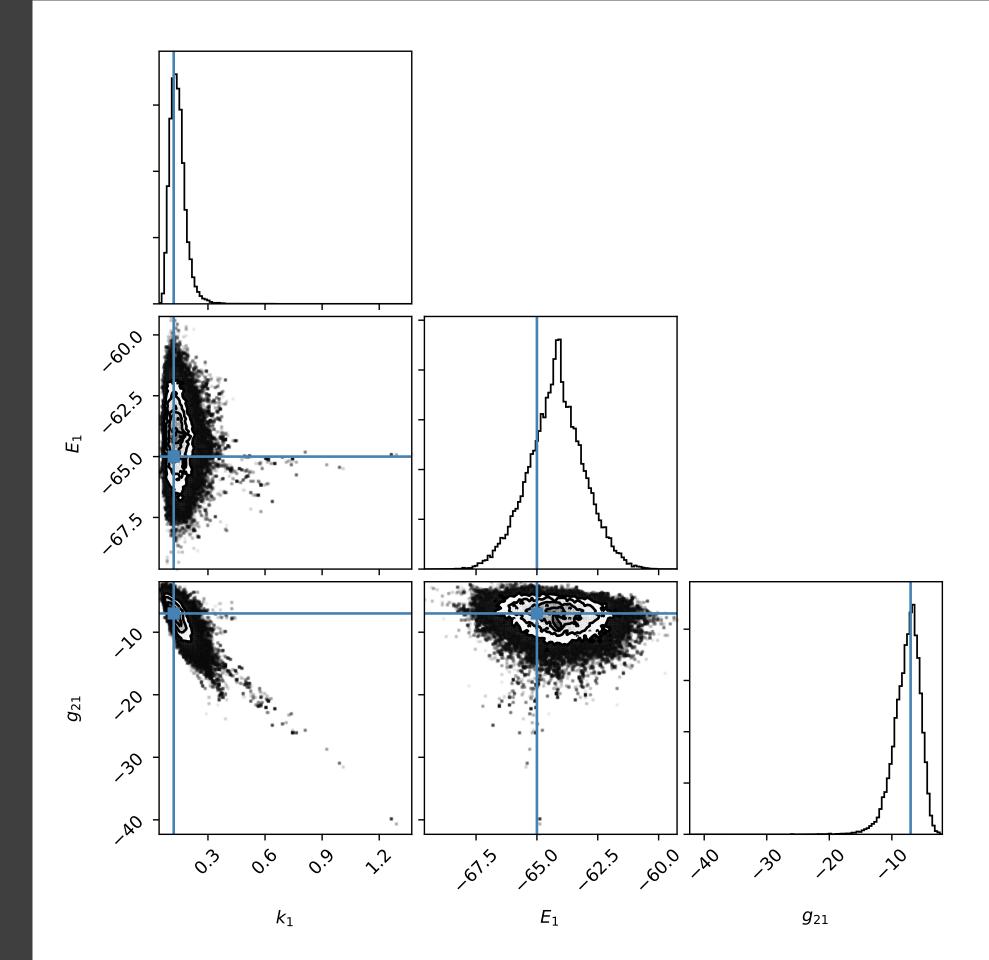
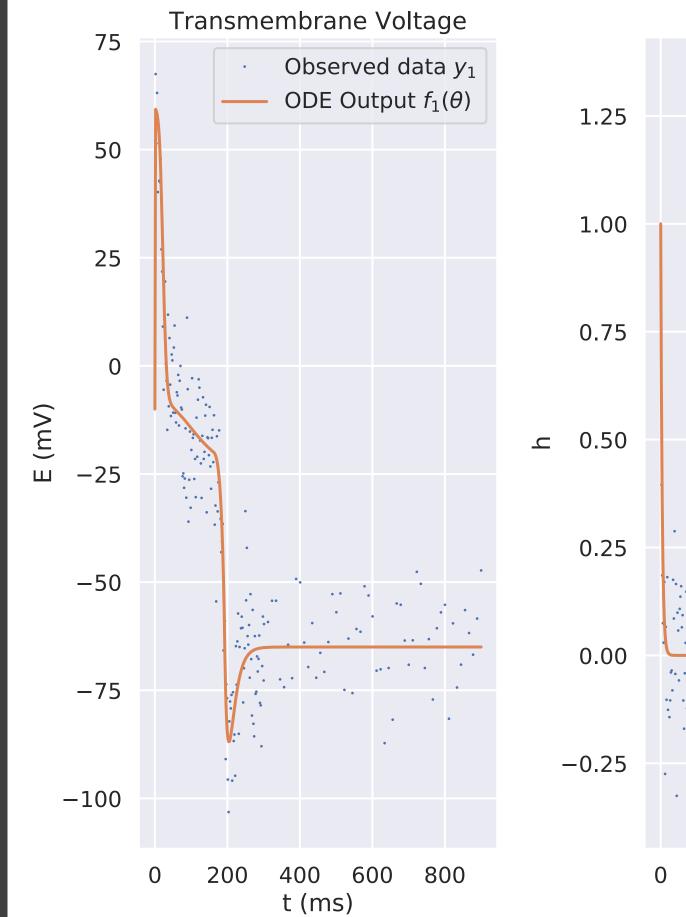
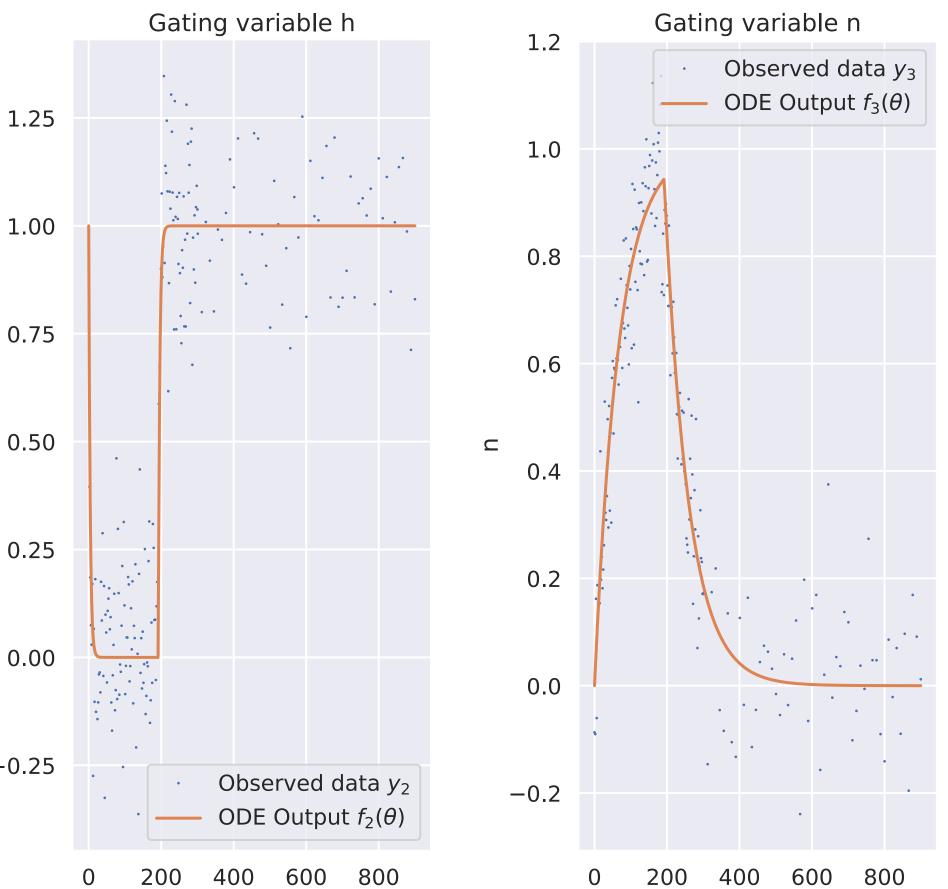
Obtaining first place estimates for Model 1

James Ritchie

(and Iain Murray)







t (ms)

0 200 400 600 800 t (ms)

Bayesian Inference

Bayes' rule:

$$p(heta \mid D) = rac{p(D \mid heta)p(heta)}{p(D)}$$

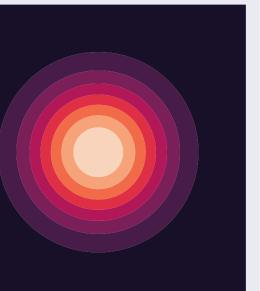
Prior $p(\theta)$

Likelihood $p(D \mid \theta)$

Posterior $p(\theta \mid D)$

 θ_2

 θ_2



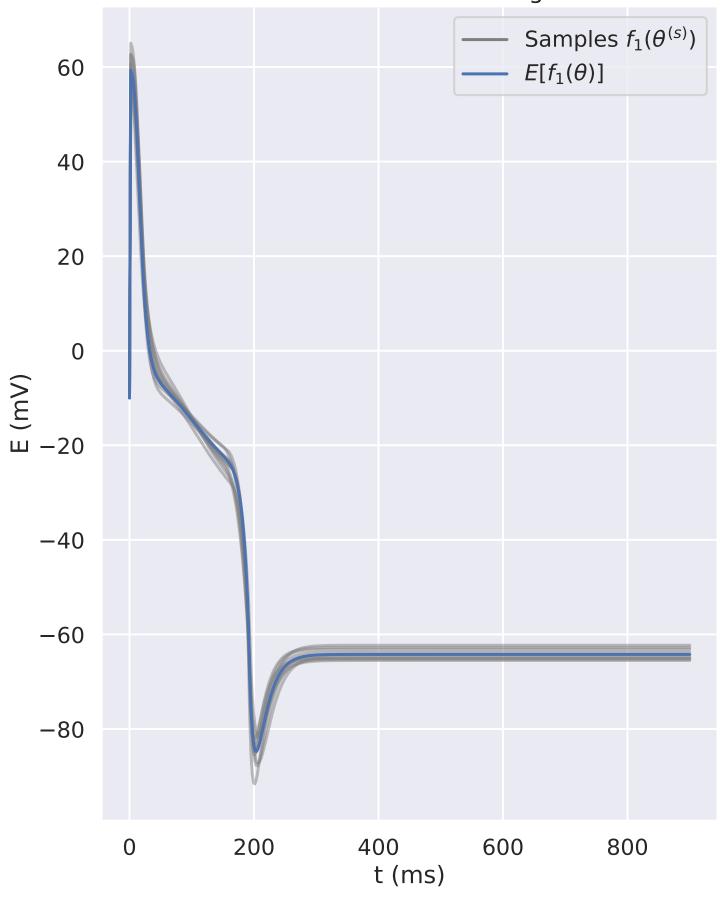
θ_1 $p(\theta \mid D)$

Bayesian Inference

$$E[f(heta)] = \int f(heta) p(heta \mid D) d heta$$

Approximate with S samples $\theta^{(s)}$ drawn from $p(\theta \mid D)$

$$E[f(heta)] pprox rac{1}{S} \sum_{s=1}^S f(heta^{(\mathbf{s})})$$

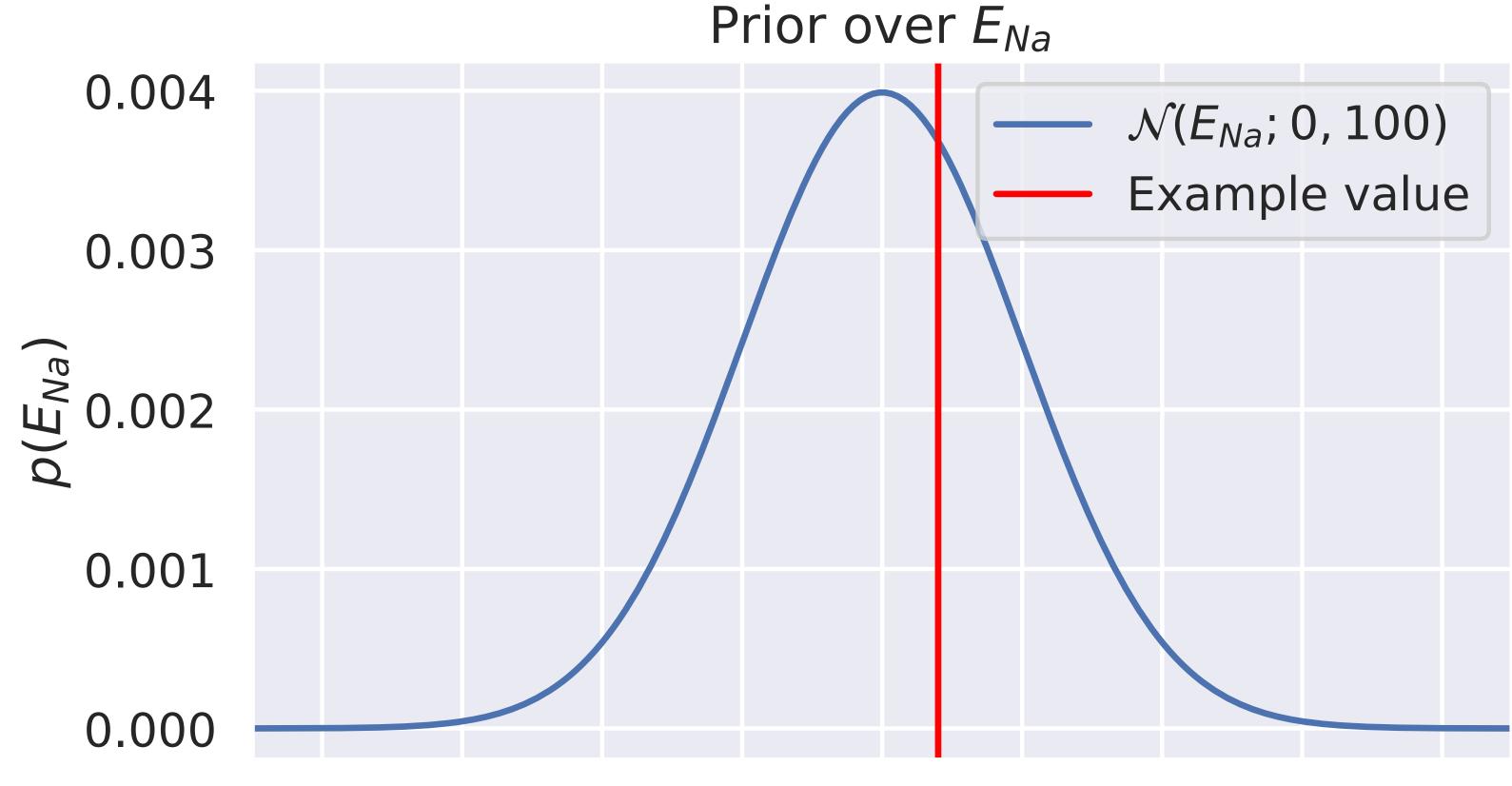


Transmembrane Voltage

Priors

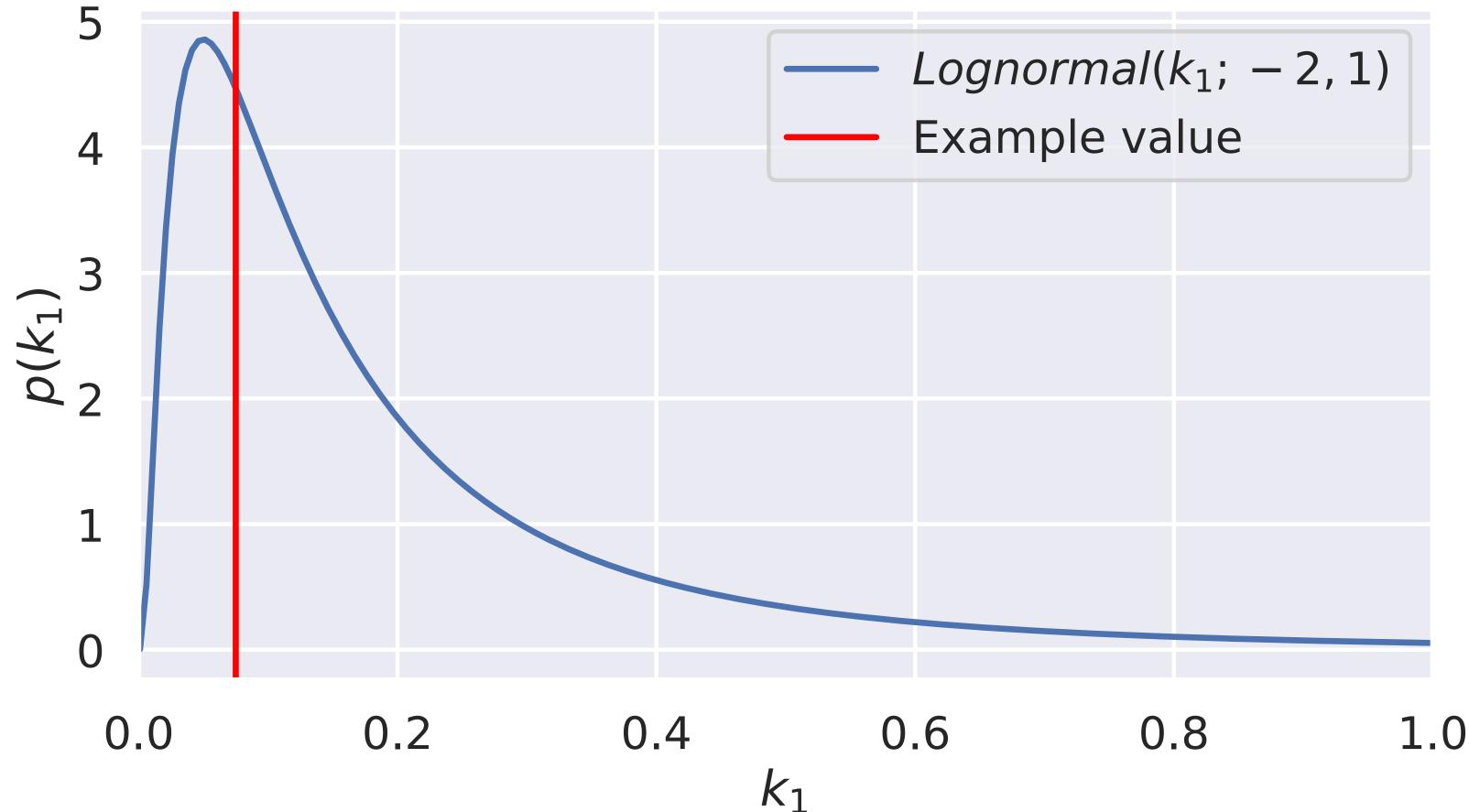
- Need to choose $p(\theta)$
- Read the paper!¹
- Types
 - Unconstrained parameters, e.g. E_{Na}
 - Constrained positive/negative: e.g. $k_1 > 0$
 - Ordered parameters, e.g. $E_1 < E_{\dagger} < E_{\star}$

¹Simitev, R.D. and Biktashev, V.N., 2011. Asymptotics of Conduction Velocity Restitution in Models of Electrical Excitation in the Heart. Bulletin of Mathematical Biology, 73(1), pp.72-115.



-400 - 300 - 200 - 1000 100 E_{Na}

200 300 400



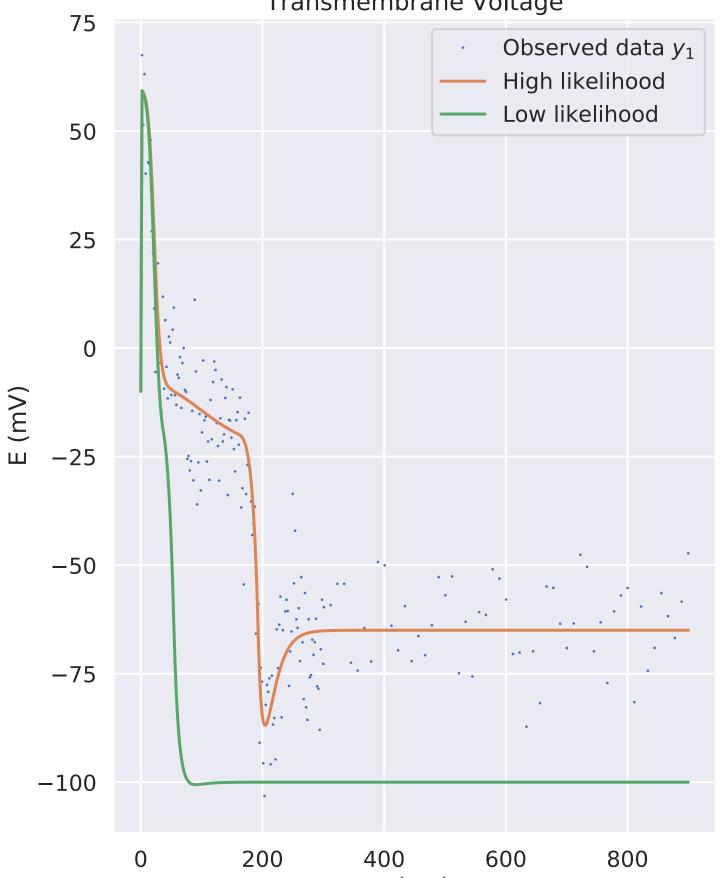
Priors on ordered parameters

- E.g. $E_1 < E_{\dagger} < E_{\star}$
- Parameterise as E_1 , $\log(E_{\dagger} E_1)$, $\log(E_{\star} E_{\dagger})$
- Normal prior on E_1 as before
- Log-normal prior on $E_{\dagger} E_1, E_{\star} E_{\dagger}$ as before

Likelihood

- Run the provided solver for given θ
- Get outputs $f_j(\theta)^{(t)}$ for each signal *j* over the timeseries
- Gaussian log-likelihood

$$\log p(D \mid heta, \sigma) = \sum_{j=1}^3 \sum_{t=1}^T \log \mathcal{N}(y_j^{(t)}; f_j(heta)^{(t)}, \sigma_j)$$



Transmembrane Voltage

t (ms)

Error handling

Warning: Failure at t=3.000000e+01. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (1.136868e-13) at time t.

Just return a likelihood of 0!

Posterior

$\log p(\theta \mid D) = \log p(D \mid \theta) + \log p(\theta) + \text{constant}$

Could pass this to an MCMC tool

First we need to find a starting point...

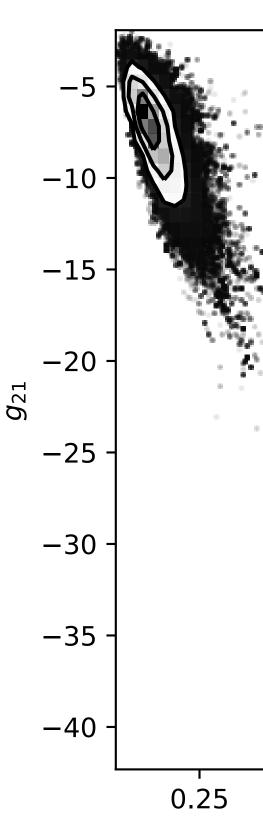
Maximum A Posteriori (MAP) Solution

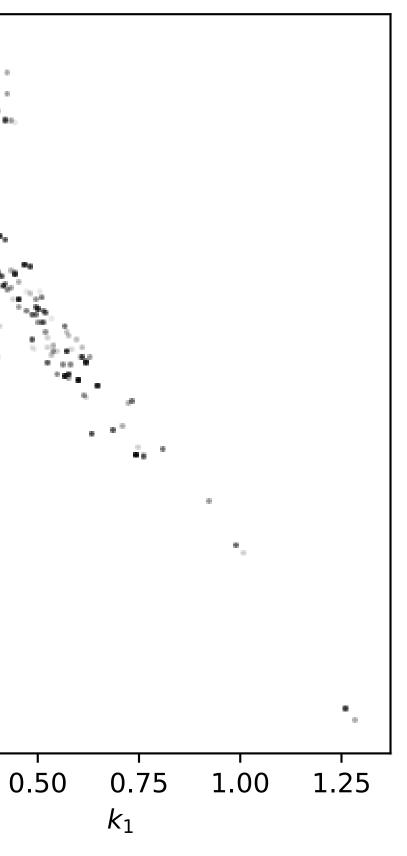
 $heta_{ ext{MAP}} = rg\max_{ heta} \log p(heta \mid D)$

- Not differentiable².
- Use Powell's method with multiple restarts
- Not Bayesian

Markov Chain Monte Carlo (MCMC) Methods

- Generate *S* samples from posterior
- Use MCMC methods
- Strong correlations in posterior
- Use emcee³

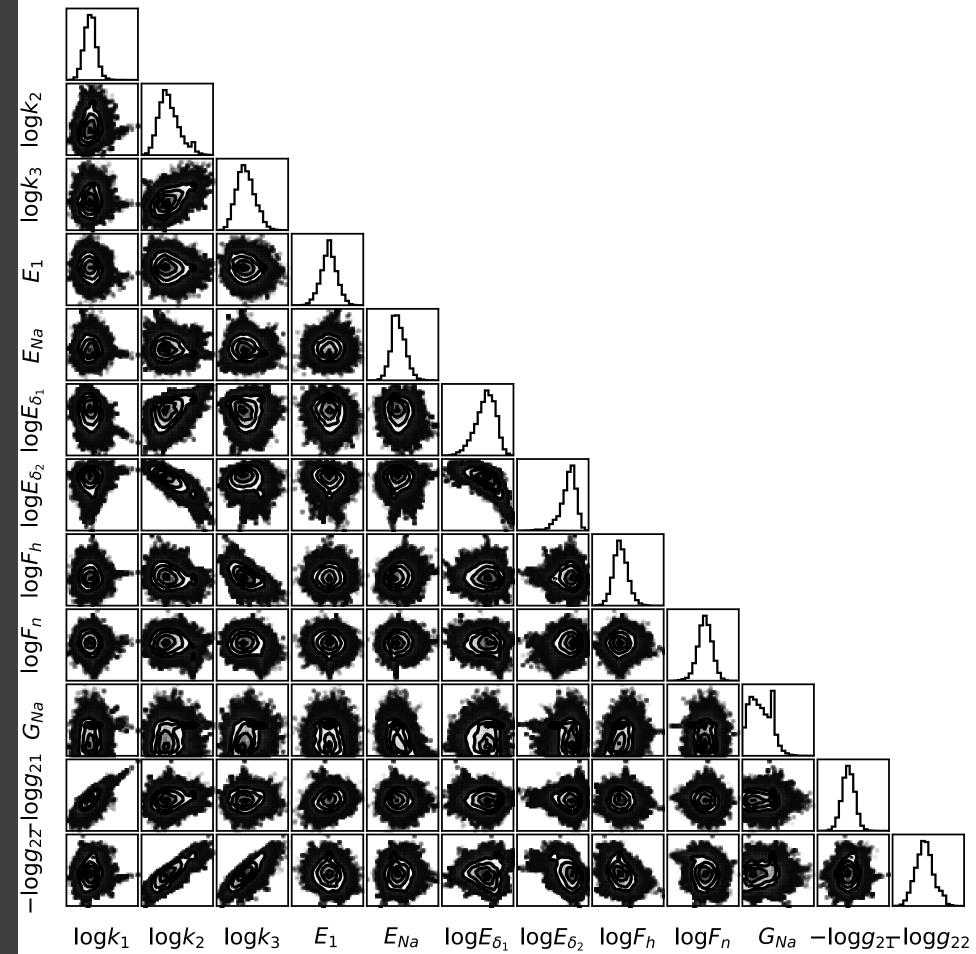


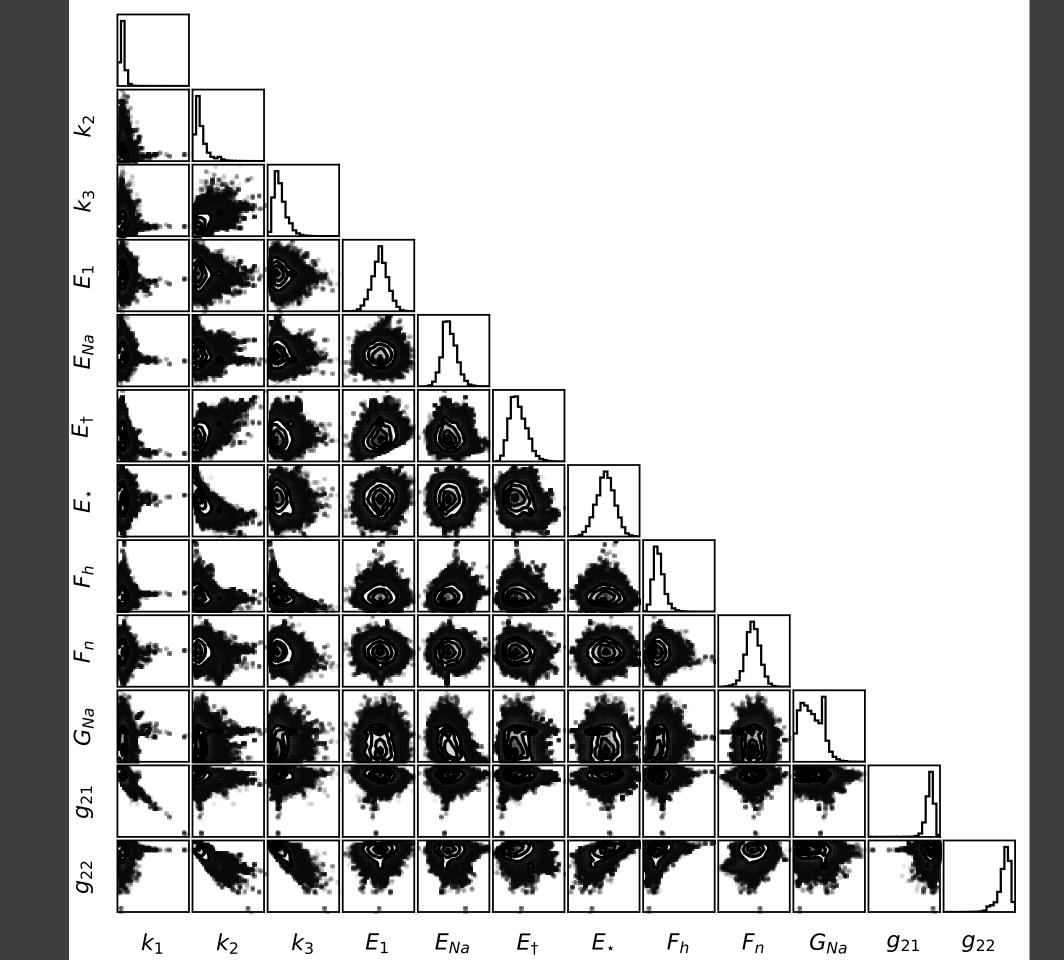


emcee

- Open source Python package
- Implements affine-invariant sampling⁴
 - Run many MCMC chains in parallel
 - Propose new samples based on other chains
- Ran for 10,000 steps with 100 chains each Discard first half of chain

⁴Goodman, J. and Weare, J., 2010. Ensemble Samplers With Affine Invariance. Communications in Applied Mathematics and Computational Science, 5(1), pp.65-80.

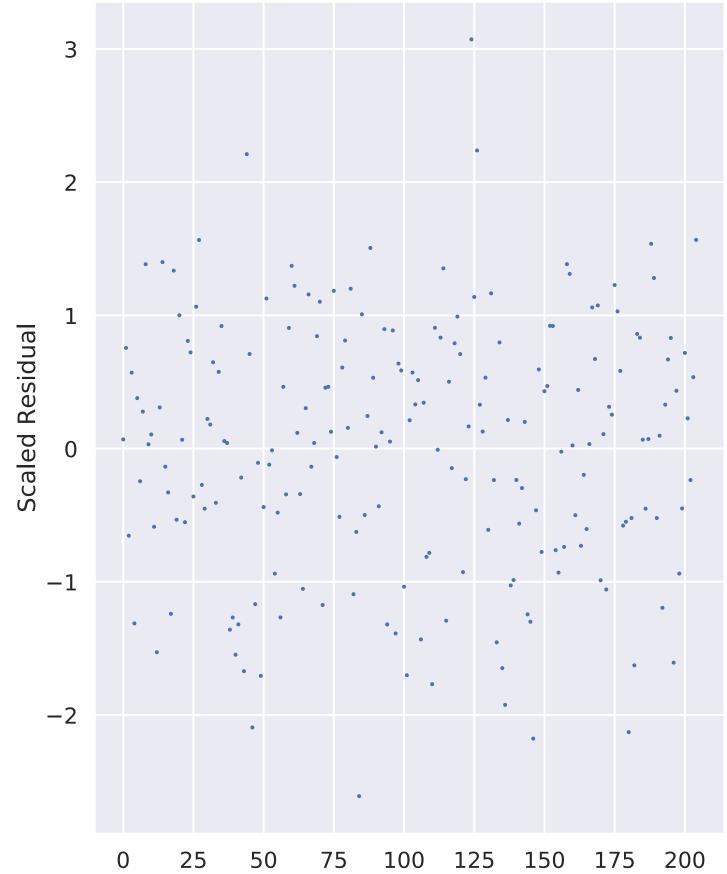




Procedure checking

- 1. Check convergence⁵
- 2. Check we can recover example parameters
- 3. Check other parameter settings
- 4. Check scaled residuals, $\frac{y_j^{(t)} - E[f_j(\theta)^{(t)}]}{\sigma_j}$

⁵ Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A. and Rubin, D.B., 2013. Bayesian Data Analysis. Chapman and Hall/CRC.



75 100 125 150 175 200 Datapoint

Competition Entry

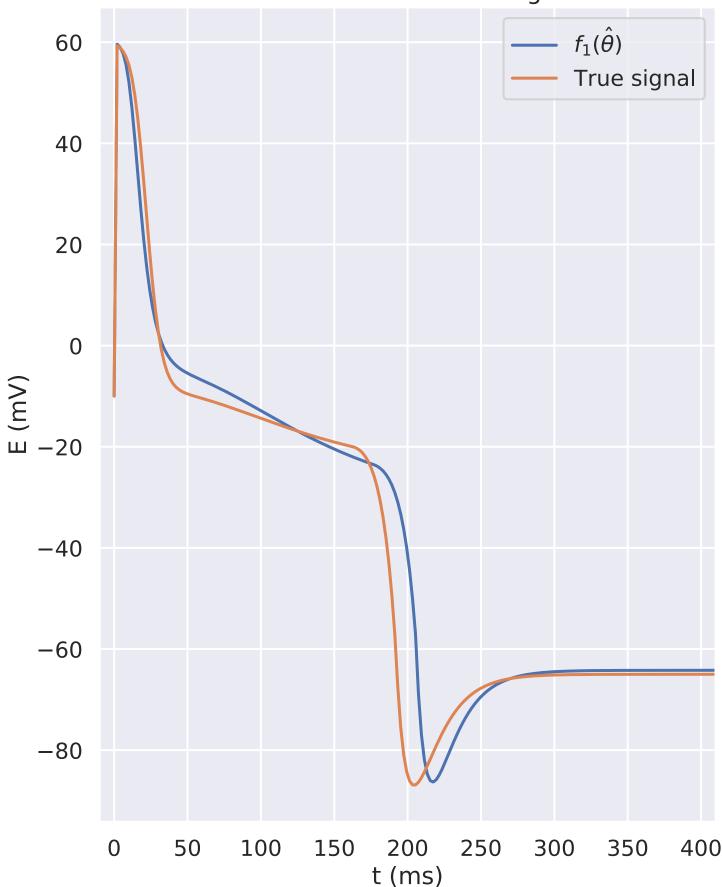
Tempting to submit MAP estimate

Instead submit sample mean $\frac{S}{1 + \frac{S}{2}}$

$$\hat{ heta} = rac{1}{S} \sum_{s=1}^{S} heta^{(s)}$$

Evaluate sample covariance similarly

Submit the mean output of the ODE, $E[f(\theta)]$, not $f(\hat{\theta})$!



Transmembrane Voltage

Problems

- 1. Unstable Covariance
- 2. Slow
- 3. Can't handle multi-modal posteriors
- 4. Won't scale to high dimensional θ

Potential Improvements

- 1. Rescale the parameters
- 2. Don't evaluate the likelihood directly
- 3. Use Parallel-Tempered Ensemble Sampling
- 4. Use more scalable MCMC algorithms

Recommendations

- 1. Choose appropriate parameterisation
- 2. Find a good initialisation
- 3. Use tuning-free algorithms
- 4. Start with generic methods
- 5. Think about expectations you need