Density Estimation with Noisy Data

James Ritchie

Hipparcos

- Noisy observations of ~118,200 stars
- Astrometric measurements
 - Where is it?
 - How fast is it?
- Photometric measurements
 - How bright is it?
 - What colour is it?

D-dimensional data with noise:

$$\mathbf{v}_i = \mathbf{x}_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0,S_i)$$

How can we do density estimation on \mathbf{x}_i when we only have \mathbf{v}_i ?

$$p(\mathbf{v}_i) = \int \mathcal{N}(\mathbf{v}_i \mid x_i, S_i) \, p(\mathbf{x}_i)$$

when we only

 $)\,d{f x}$

Extreme Deconvolution¹

Let's model $p(\mathbf{x}_i)$ using a Gaussian Mixture Model

$$p(\mathbf{x}_i) = \sum_{j=1}^K lpha_j \mathcal{N}(\mathbf{x}_i \mid \mu_j, \Sigma_j)$$

i

¹Bovy, Jo, David W. Hogg, and Sam T. Roweis. "Extreme deconvolution" The Annals of Applied Statistics 5.2B (2011): 1657-1677.

Extreme Deconvolution¹

As the noise is Gaussian, everything works out nicely!

$$p(\mathbf{v}_i) = \sum_{j=1}^K lpha_j \mathcal{N}(\mathbf{v}_i \mid \mu_j, T_{ij}), \quad T_{ij}$$

$=S_i + \Sigma_j$

¹Bovy, Jo, David W. Hogg, and Sam T. Roweis. "Extreme deconvolution" The Annals of Applied Statistics 5.2B (2011): 1657-1677.

Extreme Deconvolution¹

We can fit the GMM with Expectation-Maximisation

- 1. E-step: Compute expected statistics for each datapoint
- 2. M-step:
 - Sum these statistics together.
 - Normalise the sums to get the GMM parameters.

¹Bovy, Jo, David W. Hogg, and Sam T. Roweis. "Extreme deconvolution" The Annals of Applied Statistics 5.2B (2011): 1657-1677.

Gaia

- bigger!
- (Eventually)

Let's do Hipparcos again, but

— Approx 1 billion observations! Currently 550GB when gzip-ed

Scalable Extreme Deconvolution²

- Can't fit the entire dataset in memory easily
- Are minibatch methods better?
- Will using a GPU make it faster?

² Ritchie, James A., and Iain Murray. "Scalable Extreme Deconvolution." arXiv preprint arXiv:1911.11663 (2019).

Minibatch EM³

Core idea: Replace the sum over the entire dataset with moving average estimates.

$$\phi_j^t = (1-\lambda)\phi_j^{t-1} + \lambda \hat{\phi_j}$$

Normalise the sum estimates to get the parameters.

Write it with PyTorch so we can run it on the GPU.

³Cappé, O., & Moulines, E. (2009). On-line expectation–maximization algorithm for latent data models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3), 593-613.

Minibatch EM Problem

We really want to compute covariances like this:

$$\Sigma = E[(\mathbf{x}-\mu)(\mathbf{x}-\mu)^T]$$

But we have to do it like this:

$$\Sigma = E[\mathbf{x}\mathbf{x}^T] - \mu\mu^T$$

What happens if Σ is small relative to $\mu\mu^T$?

Catastrophic Cancellation

Small difference between two large numbers

929661.734710**6681** - 929661.734710**5937**

Blows up suprisingly quickly with 32 bit single precision floats on GPU.

Stochastic Gradient Descent

Gradient-based minibatch optimisers are pretty good, can we use those?

Need to get rid of the constraints:

1. Mixture weights α_i must add up to 1.

2. Covariances Σ_i must be positive-definite.

Stochastic Gradient Descent

Can do this with reparameterisation:

- 1. Take the softmax of an unconstrained vector **z** to get α.
- 2. Represent covariance via lower-triangular Cholesky, $\Sigma_j = L_j L_j^T$.
- 3. Keep the diagonal of L_i positive, $(L_i)_{aa} = \exp(\hat{L}_{ia})$.

PyTorch takes care of computing all the gradients.

Training time as a function of mixture components *K*

Existing EM Minibatch EM SGD

Don't use EM for mixture models

David Barber

BAYESIAN REASONING and MACHINE LEARNING

MacKay Information Theory, Inference, and Learning

Algorithms

BISHOP

PATTERN RECOGNITION AND MACHINE LEARNING

CAMBRIDGE

CAMBRIDGE

The Future

Gaussian Mixture Models are still pretty terrible.

- Cholesky decomposition for every combination of datapoint *i* and mixture component *j*
- Many mixture components needed to cover high dimensional space.
- Mixture components can't share information.

The Future

Could using a neural network to model p(x) be better?

$$ext{argmax}_{ heta} \log p(\mathbf{V}) = \sum_{i=1}^N \log \int \mathcal{N}(\mathbf{v}_i \mid \mathbf{x}_i,$$

$S_i)\,p(x_i\mid heta)\,d{f x}$

For more details see:

"Scalable Extreme Deconvolution." Ritchie, James A., and Iain Murray. arXiv preprint arXiv:1911.11663 (2019)